Modified Runge_kutta Method for Solving Nonlinear Vibration of Axially Travelling String System

نویسندگان

  • Qun Wu
  • Enwei Chen
  • Yimin Lu
  • Zhengshi Liu
  • Xiang Tang
چکیده

In this paper, based on the classical Fourth-Order Runge-Kutta method, the modified FourthOrder Runge-Kutta method is presented for solving nonlinear vibration of axially travelling string system, that is to solve time varying and nonlinear differential equations. The classical Fourth-Order Runge-Kutta method can only be used to solve first-order linear differential equations. Its main idea is to calculate the value of the function for the state equation four times and then take a linear combination of these values, which increases the order of the truncation error for the numerical method, so as to improve the accuracy of the method. The modified Fourth-Order Runge-Kutta method is a novel method considering the nonlinear term of differential equations, it applies to whatever nonlinear equations that can be transformed into first order matrix differential equation and has no restrict of the order of the original equations. Compared with other methods, it avoids the matrix inversion and has high precision and simplicity. Then a time-varying nonlinear governing equation of an axially travelling string system will be considered, by setting different parameters, the corresponding magnitude of the nonlinear term of the governing equation is different. The modified Fourth-Order RungeKutta method and the Newmark-Beta method are used respectively to solve the time-varying nonlinear governing equation of the string model. Good agreements are observed in the results by the two methods, which proved the validity and effectiveness of the modified FourthOrder Runge-Kutta method and also by setting different parameters indicated that the proposed method is suitable for the differential equations both with strong and weak nonlinear terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear vibration analysis of axially moving strings in thermal environment

In this study, nonlinear vibration of axially moving strings in thermal environment is investigated. The vibration haracteristics of the system such as natural frequencies, time domain response and stability states are studied at different temperatures. The velocity of the axial movement is assumed to be constant with minor harmonic variations. It is presumed that the system and the environment...

متن کامل

Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...

متن کامل

Vibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods

Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...

متن کامل

Modified Multi-level Residue Harmonic Balance Method for Solving Nonlinear Vibration Problem of Beam Resting on Nonlinear Elastic Foundation

Nonlinear vibration behavior of beam is an important issue of structural engineering. In this study, a mathematical modeling of a forced nonlinear vibration of Euler-Bernoulli beam resting on nonlinear elastic foundation is presented. The nonlinear vibration behavior of the beam is investigated by using a modified multi-level residue harmonic balance method. The main advantage of the method is ...

متن کامل

Nonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions

In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014